SQL Server 2005中的窗口函数帮助你迅速查看不同级别的聚合,通过它可以非常方便地累计总数、移动平均值、以及执行其它计算。
1.简介:3.例题:
代码如下:
--建立订单表
create table SalesOrder(
OrderID int, --订单id
OrderQty decimal(18,2) --数量
)
go
--插入数据
insert into SalesOrder
select 1,2.0
union all
select 1,1.0
union all
select 1,3.0
union all
select 2,6.0
union all
select 2,1.1
union all
select 3,8.0
union all
select 3,1.1
union all
select 3,7.0
go
--查询得如下结果
select * from SalesOrder
go
OrderID OrderQty
----------- ------------
1 2.00
1 1.00
1 3.00
2 6.00
2 1.10
3 8.00
3 1.10
3 7.00
现要求显示汇总总数,每当所占比例,分组汇总数,每单在各组所占比例,要求格式如下:
OrderID OrderQty 汇总 每单比例 分组汇总 每单在各组比例
1 2.00 29.20 0.0685 6.00 0.3333
1 1.00 29.20 0.0342 6.00 0.1667
1 3.00 29.20 0.1027 6.00 0.5000
2 6.00 29.20 0.2055 7.10 0.8451
2 1.10 29.20 0.0377 7.10 0.1549
3 8.00 29.20 0.2740 16.10 0.4969
3 1.10 29.20 0.0377 16.10 0.0683
3 7.00 29.20 0.2397 16.10 0.4348
代码如下:
--利用窗口函数和聚合开窗函数,可以很快实现上述要求
select OrderID,OrderQty,
sum(OrderQty) over() as [汇总],
convert(decimal(18,4), OrderQty/sum(OrderQty) over() ) as [每单所占比例],
sum(OrderQty) over(PARTITION BY OrderID) as [分组汇总],
convert(decimal(18,4),OrderQty/sum(OrderQty) over(PARTITION BY OrderID)) as [每单在各组所占比例]
from SalesOrder
order by OrderID
窗口函数是sql2005新增加的,下面我们看看在sql2000里面怎么实现上述的结果:
sql2000的实现步骤较麻烦,先计算出总数,再分组计算汇总,最后连接得到结果
代码如下:
--sql2000
declare @sum decimal(18,2)
select @sum=sum(OrderQty)
from SalesOrder
--按OrderID,计算每组的总计,然后插入临时表
select OrderID,sum(OrderQty) as su
into #t
from SalesOrder
group by OrderID
--连接临时表,得到结果
select s.OrderID,s.OrderQty,
@sum as [汇总],
convert(decimal(18,4),s.OrderQty/@sum) as [每单所占比例],
t.su as [分组汇总],
convert(decimal(18,4),s.OrderQty/t.su) as [每单在各组所占比例]
from SalesOrder s join #t t
on t.OrderID=s.OrderID
order by s.OrderID
drop table #t
go
上面演示的都是窗口函数与聚合开窗函数的使用,它与排名开窗函数请看下面例题:
代码如下:
--与排名开窗函数使用
select OrderID,OrderQty,
rank() over(PARTITION BY orderid order by OrderQty ) as [分组排名],
rank() over(order by OrderQty ) as [排名]
from SalesOrder
order by orderid asc
--查询得如下结果
OrderID OrderQty 分组排名 排名
1 2.00 2 4
1 3.00 3 5
1 1.00 1 1
2 1.10 1 2
2 6.00 2 6
3 7.00 2 7
3 8.00 3 8
3 1.10 1 2